Rong Zou

🛇 rong-zou.github.io | 🗠 ronzou@ethz.ch | 🛛 +41 765254836 | 🛇 Zürich, Switzerland

EDUCATION

Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Master of Science in Robotics, Systems and Control

• Final grade: 5.94/6.0

University of Southampton (UoS) *Visiting Student in Ship Science*

• Final grade: **81/100** (**First Class**)

Huazhong University of Science and Technology (HUST)

Bachelor of Engineering in Naval Architecture and Ocean Engineering
Final grade: 3.94/4.00, 92.3/100 (Ranking 1/112)

PUBLICATIONS

Retrieval Robust to Object Motion Blur

Rong Zou, Marc Pollefeys, Denys Rozumnyi. In European Conference on Computer Vision. 2024.

Seeing Behind Dynamic Occlusions with Event Cameras

Rong Zou, Manasi Muglikar, Nico Messikommer, Davide Scaramuzza. In arXiv. 2023.

Path Tracking Control of Skid-steered Mobile Robot on Slope Based on Fuzzy System and MPC X. Yue, J. Chen, Y. Li, R. Zou, Z. Sun, X. Cao, S. Zhang. In *Int. J. Control Autom. Syst.* 2022.

WORK EXPERIENCE

Computer Vision Lab, Zürich Research Center, Huawei TechnologiesSwitzerlandComputer Vision and Machine Learning Research InternMar. 2024 – Sep. 2024

 Conducted research on realistic image synthesis and deep learning-based image de-flickering to improve the quality of images captured by mobile phone cameras in dynamic scenes

Robotic Systems Lab (RSL), ETH Zürich

Robotics Research Assistant

• Contributed to the Autonomous River Cleanup project, responsible for data processing, front-end and back-end real-time communication, real machine testing and deployment

Corporate Research - Asia Pacific, Bosch (China) Investment Ltd.

Robotics Research Intern

- Improved the grasp planning algorithm for a robotic arm and verified the effectiveness by simulation
- Assembled and calibrated a robot gripper experimental platform and tested grasping stability on it

School of Mechanical Science & Engineering, HUST

Robotics Research Assistant

- Developed improved particle swarm optimization algorithm for mobile robot global path planning
- Developed MPC-based algorithm for path tracking control of skid-steered wheeled mobile robots

China

Switzerland

May 2021 – *Aug.* 2021

June 2022 – *Dec.* 2022

China

Sep. 2019 – *Sep.* 2020

Sep. 2021 – Dec. 2024

Switzerland

United Kingdom

Jan. 2019 – *June* 2019

China *Sep.* 2015 – *June* 2019

Monocular Depth Estimation with Virtual View Supervision

- Proposed leveraging Neural Implicit Surface Reconstruction methods to augment a limited-scale dataset via scene reconstruction and virtual view-depth pair generation for the training of supervised MDE networks
- Rendered images from Replica scenes as the base dataset, trained MonoSDFs for novel RGBD data generation 0
- Conducted extensive experiments, demonstrating significant improvements in DeepLabV3+ network MDE performance when using novel views as additional supervision signals

Computer Vision and Deep Learning for Autonomous Driving

- Fused multimodal driving data, identified laser ID from a given point cloud using K-means clustering, projected the LiDAR point cloud onto camera images and eliminated motion distortion with GPS/IMU data
- Constructed a multi-task learning architecture based on the DeepLabV3+ model for semantic segmentation and monocular depth estimation, ableted network architecture and improved the base network performance
- 0 Created a 3D object detector to detect vehicles from LiDAR data, and studied the impact of canonical transformations and data augmentation on the box refinement stage of the detector

Vision-based Control for A Ball-balancing Robot

- Set up and calibrated the Pixy2 camera for object tracking; obtained the ball's pixel coordinates from the camera and transformed them into world coordinates for positional control
- Filtered the visual signal using Butterworth filter to effectively estimate ball velocities for PID control, implemented inverse kinematics of robotic arms to calculate servo angles from PID output
- Set up the ball balancing robot platform and tested algorithms in an Arduino microcontroller, successfully achieved perturbation-free self-balancing as well as specified trajectory tracking of the ball

Monocular Visual Odometry for Mobile Robots

- Extracted and matched SURF features between keyframes and used the P3P algorithm for pose estimation
- Implemented sliding-window bundle adjustment to reduce reprojection errors and optimize estimated poses
- Performed loop detection based on a BoW model as well as global trajectory optimization for loop closure

HONOURS AND AWARDS

Excellent Graduation Thesis	Top 1/112
<i>Huazhong University of Science and Technology</i>	2019
National Encouragement Scholarship	Top 3%
<i>Ministry of Education of the People's Republic of China</i>	2018
National Scholarship	Top 0.2%
<i>Ministry of Education of the People's Republic of China</i>	2016, 2017
Model Student of Self-improvement	Top 0.1%
<i>Huazhong University of Science and Technology</i>	2017
Exceptional Undergraduate	Top 1%
Huazhong University of Science and Technology	2017
Merit Student	Top 3%
Huazhong University of Science and Technology	2016, 2017, 2018

SKILLS

Programming: Python, C++, Matlab, C, JavaScript, bash Software / Framework: Pytorch, OpenCV, ROS, Blender Languages: Chinese (native), English (C1 - proficient), German (basic) Others: Git, Latex, Anaconda, Docker

PROJECTS

Feb. 2023 – June 2023

Mar. 2022 – *July* 2022

Feb. 2022 – May 2022

Nov. 2021 – Jan. 2022