
Enhanced Box Refinement for 3D Object Detection

Matthew Hanlon
ETH Zurich

Rong Zou
ETH Zurich

Abstract

In this work, we build upon the existing two-stage 3D
object detection pipeline for the task of detecting cars in
LiDAR data. We incorporate two modules from the exist-
ing literature into the box refinement stage of the baseline
network and study their effect on the overall performance.
With the canonical transformation module, we introduce a
step where the pooled input points are transformed into a
corresponding local coordinate frame before being fed into
the network. We additionally introduce more variance into
the training set by randomly augmenting the samples with
geometric transformations. We show that a significant in-
crease in performance can be achieved using the canonical
transformation module and that while the data augmenta-
tion method provides an improvement over the baseline net-
work on its own, the effect is negated when used in combi-
nation with the canonical transformation mechanism.

1. Introduction

After training the baseline network, it becomes clear that
there are several aspects that could be improved. Firstly,
while the baseline network can accurately regress bound-
ing box parameters for object detections at short distances,
it seems to struggle with those that are further away, re-
ducing the overall mAP scores. Furthermore, when review-
ing the training scheme of the baseline implementation, we
note that none of the training data augmentation methods
commonly used for image data are applied to the training
samples, which may increase the likelihood of the model
overfitting on the training set.

With the goal of overcoming these shortcomings of
the baseline model and improving the prediction accuracy,
some modifications are made on the basis of the prelimi-
nary network. Specifically, in order to enable the network
to make more accurate predictions for distant objects, we
implement an approach that uses more information from the
first stage predictions, transforming the pooled input points
of each prediction into their corresponding canonical coor-
dinate frames. This way, instead of regressing the bounding
box parameters directly, our network learns to regress only

the differences between the the first stage predictions and
their corresponding ground truths, which can then be added
back to the first stage predictions to recover the full bound-
ing box parameters. Besides, to make the model more ro-
bust and reduce the risk of overfitting, we introduce more
variations into the training set by augmenting the samples
with randomized geometric transformations.

2. Related Work

Both aspects of the approach described in section 1 are
inspired by the work of [1], where a very similar two-stage
object detection pipeline was implemented.

The authors of [1] claim that the canonical transforma-
tion of the pooled input points enables the network to learn
better local spatial features, while taking advantage of the
high recall first-stage predictions. This is due to the fact that
after transformation, the input points of each proposal lie in
the local coordinate frame of the corresponding first-stage
prediction. In this way, for each positive sample, the geo-
metric features of the object have similar orientations and
locations. This lowered variance of the appearance of posi-
tive samples aims to improve the capability of the network
to identify them. By transforming the ground truths in the
same way and forming the training pairs, this approach also
simplifies the regression task, as the network only needs to
learn to predict the bounding box residuals between the pre-
diction and the ground truth, instead of regressing the full
bounding box parameters for each prediction.

A common technique to avoid overfitting in image clas-
sification tasks is to make use of training data augmenta-
tions [2]. Introducing random transformations to the train-
ing data increases the variance between the samples. Sev-
eral of the data augmentation methods used for 2D images
are not applicable for our problem. However, several com-
mon geometric transformation techniques generalize quite
easily to data that is in a 3D space.

Although the authors of [1] made use of both of these
approaches in their implementation, they did not isolate the
effects of these methods. In our work, we aim to study
their effects in an isolated fashion to determine the bene-
fits and/or drawbacks of using these modules individually
and in combination for the task of 3D object detection.

1



3. Method

As mentioned before, both aspects of our approach were
also implemented by [1]. Parts of the implementation were
adapted from their released code1 for our project.

3.1. Canonical Transformation

3.1.1 Basic idea

Figure 1. Visualization of the canonical transformation process.
The pooled input points are transformed to the local coordinate
frame of the predicted bounding box. CCS denotes the canonical
coordinate system. [1]

The visualization of the canonical transformation pro-
cess is shown in Fig. 1. For each 3D proposal that con-
sists of a predicted bounding box and a set of pooled points
expressed in world coordinates, we transform the position
vectors of the point cloud relative to the box center from the
world coordinate system to the canonical coordinate system
byxy

z


p,canonical

= RCW ∗ (

xy
z


p,world

−

xy
z


b,world

)

where [x, y, z]T denotes position, the first subscript denotes
pooled points (p) or center of the stage-1 predicted box (b),
the second subscript means the coordinate system that the
position is expressed in, and RCW is the rotation matrix
from world to canonical coordinate system, which is

RCW =

cos(roty) 0 -sin(roty)
0 1 0

sin(roty) 0 cos(roty)


in which roty is the orientation of the predicted box (only
consider the rotation around y).

3.1.2 Treatment for different sets

For the training set and validation set, canonical transfor-
mation is performed not only on the 3D proposals from the

1https://github.com/sshaoshuai/PointRCNN

first stage, but also on the ground-truth bounding boxes cor-
responding to the proposals, i.e. their labels.xy

z


g,canonical

= RCW ∗ (

xy
z


g,world

−

xy
z


b,world

)

θg,canonical = θg,world − roty

where θ denotes the orientation and the subscript g the
ground-truth box. In this way, the loss function computes
the loss using the transformed predictions and labels.

Besides, for the validation set, after calculating the loss
the refined predictions are restored to the world coordinate
system using inverse canonical transformations. This is for
the convenience of visual validation.xy

z


r,world

= RWC ∗

xy
z


r,canonical

+

xy
z


b,world

θr,world = θr,canonical + roty

in which the subscript r denotes the refined bounding box
(stage-2 output), RWC is the inverse of RCW ,

RWC =

 cos(roty) 0 sin(roty)
0 1 0

-sin(roty) 0 cos(roty)


For the test set, we canonically transform the first stage

proposals for box refinement and perform inverse transfor-
mation after obtaining the refined boxes, so that the final
output of the network is a set of refined boxes in the world
coordinate system.

3.1.3 Feature augmentation

The advantage of using canonical coordinates is that it en-
ables robust learning of local spatial features. However,
compared to world coordinates, depth information is dis-
carded in local coordinate system. To compensate for this,
the normalized distance to the LiDAR, which contains the
depth information, is included in the feature vector of each
point. For a point [x, y, z]T , the normalized depth is calcu-
lated as

d =

√
x2 + y2 + z2

m
− 0.5

in which m is a value close to the range of the LiDAR, in
our experiments it is set to 70 meters.

In addition, the laser reflection intensity of each point is
also added into its feature, since it may be helpful for the
classification task.

2



3.2. Training Data Augmentation

When augmenting the training samples, the modality of
the data limits the possible augmentations to those of a ge-
ometric nature. We implemented three types of geometric
transformation that can be applied to the samples, with the
goal of increasing the variance and thus improve the perfor-
mance on the test and validation sets.

The augmentations are applied to the training samples at
random. The probability with which each type of augmen-
tation is applied to a given sample can be configured by the
user. For the rotation augmentation, the user can also set the
range of angles by which a sample can be rotated.

3.2.1 Rotation

The rotational augmentation is applied by rotating the sam-
ple points, the first stage prediction box and the ground truth
box around the y-axis of the global coordinate frame by a
randomly sampled angle. The range from which the angle is
sampled can be determined with the configuration file. For
the experiments where the training data was augmented, the
angles were sampled from the range [−10◦, 10◦] and the
augmentation was applied to all samples (prot = 1). This
process introduces more positional variance of the objects
into the train set. An example of the rotational augmenta-
tion can be seen in Fig. 2.

Figure 2. Training sample after a rotational augmentation has been
applied. Original sample points in white, augmented sample in
green.

3.2.2 Scale

The scaling augmentation is applied by multiplying the co-
ordinates of all sample points and all of the bounding box
parameters except for roty by a value randomly sampled
from a given range. For the experiments the scale value is
sampled from [0.95, 1.05] and applied to all training sam-
ples (pscale = 1).

3.2.3 Flip

The flip augmentation works by multiplying the x-
coordinate of all the sample points by −1. The x param-
eter of the ground truth and first stage prediction boxes are

also multiplied by −1 and the roty parameters are also ad-
justed accordingly. For the experiments, this augmentation
was applied randomly to roughly half of the training sam-
ples (pflip = 0.5). Fig. 3 presents an example of the flip
augmentation.

Figure 3. Training sample after a flip augmentation has been
applied. Original sample points in white, augmented sample in
green.

4. Results & Discussion
4.1. Mean Average Precision (mAP)

The validation scores of the baseline and improved net-
works after training for 35 epochs are shown in Tab. 1. The
values in the table are mAPs for different difficulty cate-
gories, as well as the largest improvement over the baseline
achieved by the top-performing network in that category.

Results on Validation Set after 35 Epochs
Networks Easy Moderate Hard
Baseline 77.69 71.24 64.57
Data Aug. 84.85 74.78 73.14
Can. Trans. 94.73 89.33 88.48
Data Aug. + Can.
Trans.

94.93 89.12 88.29

Relative
Improvement

17.24 18.09 23.91

Table 1. Comparison of validation set performance for the differ-
ent networks.

As can be seen from Tab. 1, both modules described in
Sec. 3 individually improve the network performance in
all three difficulty categories, with canonical transforma-
tion achieving a significantly greater improvement. For the
network with training data augmentation, compared to the
scores of the baseline model, the largest increase is achieved
in the hard category (8.57%), while the moderate class
shows the smallest improvement (3.54%). Using the canon-
ical transformation results in more considerable improve-
ments, with increases of respectively 17.04%, 18.09%, and
23.91% for the three categories over the baseline network.
When combining both modules in one network, the perfor-
mance is quite similar to the one that only uses canonical
transformation.

3



To illustrate the above discussion more clearly and in de-
tail, example predictions for the same scene using the base-
line network and improved networks are shown in Fig. 4.

In Fig. 4a it can be seen that the baseline network accu-
rately predicts the locations of the two objects closest to the
sensor with an IoU with ground truth > 80. It is however
noticeable that the IoU with ground truth objects decreases
with the distance to the sensor, with lowest value being 65.
All of the detections made by the baseline network in this
scene are correct.

In Fig. 4b we can see that for this scene the overall results
obtained using the network with data augmentation are sim-
ilar to those obtained by the baseline network. The predic-
tions have a similar accuracy at close and far ranges, again
the IoU scores are higher for objects close to the sensor and
lower for the distant ones.

We can see in Fig. 4c that the results obtained by the net-
work that was trained using the canonical transformation
are much more accurate than those obtained by the baseline
network. The IoU for all correct predictions is > 80, even
for the object that is furthest away from the LiDAR, with
the lowest being 81. This in particular shows that the use of
canonical transformation increases the detection accuracy
at greater distances compared to the baseline network and
the one trained with data augmentation. However, in con-
trast to the two previous networks, this network makes an
incorrect bounding box prediction for a cluster located near
the boundary of the point cloud.

Fig. 4d shows very similar results to those in Fig. 4c. The
predictions made by the network trained with both data aug-
mentation and canonical transformation obtain very similar
IoU scores in this scene. The network also falsely classifies
the same cluster close to the maximum range of the LiDAR
and therefore makes a false prediction.

The networks that include the canonical transformation
module in their training perform significantly better than
those that do not. However, this module may also make the
network more susceptible to false detections far away from
the origin. In the context of autonomous driving, the conse-
quences of false detections are less severe than missing an
object, especially if the only false detections are far away.
This weakness of the canonical transformation module most
likely comes from the loss of depth information that it in-
curs. A possible solution could be incorporate the distance
to the sensor more heavily in the feature vector of the in-
put points, for example by feeding the augmented features
described in Sec. 3.1.3 through an additional convolutional
network. Another possible reason is that the value of the hy-
perparameter m used in Sec. 3.1.3 is inaccurately selected,
therefore better results may be obtained by increasing m.

It should also be noted that, although both modifications
can individually improve the baseline network performance,
the network that includes both modules has almost identical

(a) Baseline network

(b) Training with data augmentation

(c) Training with canonical transform

(d) Training with data augmentation and canonical transform

Figure 4. Visualizations of detections for the same scene using
different networks after training for 35 epochs.

4



performance to the network using only the canonical trans-
formation, with the difference in mAP being merely around
0.2% for all categories. This is most likely due to the fact
that the intended purpose of the canonical transformation
module is to negate the effects of geometric variations of
the positive samples. Thus, the introduction of this type of
variance through the data augmentation module has little to
no effect on the results. From this result we can conclude
that the use of geometric data augmentation techniques are
not of any benefit when using a canonical transform module
and it is better to save the computational effort of augment-
ing the training samples.

4.2. Convergence Speed

Another aspect worth noting is the speed of convergence
of the training. In Fig. 5 we can see how the mAP for
the moderate category increases during training for each
of the networks (the graphs for the other categories fol-
low an almost identical trend). It is clear to see that the
networks that include the canonical transformation module
converge much faster than the baseline network and the net-
work trained with only the data augmentation module. Af-
ter as little as 5 epochs, the training of the networks using
canonical transformation have already converged, whereas
the mAP curves of their counterparts gradually increase,
showing no sign of convergence even at the end of train-
ing. Further evidence to support this, is that the results on
the Codalab grader (test set) were almost identical after 5
epochs as after 35 epochs for the networks incorporating
canonical transformation.

Figure 5. Evolution of moderate mAP during training.

4.3. Resource Consumption

In terms of the GPU memory consumption, the process
GPU memory allocated for all the networks are similar,
which is around 70%. While it is hard to determine the
exact required training runtime for the networks due to the
unstable AWS instances used, we did not notice a signifi-
cant difference between the training time of the networks

when taking into account all 35 epochs of training without
regard to convergence.

4.4. Final Grader Results

The best results on the test set using the CodaLab grader
were achieved by the network using the canonical transform
module, after only five training epochs. These results can be
seen in Tab. 2.

Grader Test Metrics
Easy mAP Moderate mAP Hard mAP
94.76 89.23 87.00

Table 2. Grader performance of the network using the canonical
transform module after training for 5 epochs.

5. Conclusion
In this report, we have presented two methods for ad-

dressing the shortcomings and improving the performance
of the baseline network, namely, canonical transformation
for the model to predict distant objects more accurately, and
data augmentation for it to not overfit the training data. We
also studied their respective effects on the baseline network
and the effect when they are combined. It is shown through
experiments that, by applying the presented modules, com-
pared to the baseline model, the mAP metrics improve re-
markably by 17.24%, 18.08% and 23.91% on the validation
sets of three different difficulty levels, respectively. Exper-
imental results also show that the separate application of
both modules can achieve significant improvements over
the baseline model, while their combined application pro-
vides a similar performance as applying the canonical trans-
formation alone. In other words, the data augmentation
module is redundant when canonical transformation is per-
formed in the network. Moreover, we find that by utilizing
canonical transformation in the model, the increased perfor-
mance can be achieved with a considerably reduced training
time, meaning that it leads to much faster convergence. On
the other hand, the canonical transformation can cause the
model to produce false predictions near the boundary of the
point cloud, but adjusting parameters and hyperparameters
related to the depth feature of the points may alleviate this
adverse effect.

References
[1] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point
cloud, 2018. 1, 2

[2] Connor Shorten and Taghi M. Khoshgoftaar. A survey on im-
age data augmentation for deep learning. Journal of Big Data,
6(1):60, Jul 2019. 1

5


	. Introduction
	. Related Work
	. Method
	. Canonical Transformation
	Basic idea
	Treatment for different sets
	Feature augmentation

	. Training Data Augmentation
	Rotation
	Scale
	Flip


	. Results & Discussion
	. Mean Average Precision (mAP)
	. Convergence Speed
	. Resource Consumption
	. Final Grader Results

	. Conclusion

