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Abstract

Data-driven methods have gained popularity for ad-
dressing the monocular depth estimation (MDE) task.
Among them, supervised methods, which yield state-of-the-
art (SOTA) results, require large amounts of labeled train-
ing data, posing challenges in terms of costly ground-truth
label collection. This work aims to enhance the perfor-
mance of existing supervised learning-based MDE meth-
ods by generating a substantial number of virtual views as
additional supervision signals, circumventing the laborious
and time-consuming process of collecting extra data. We
propose leveraging the capabilities of Neural Implicit Sur-
face Reconstruction (NISR) techniques to augment an ex-
isting limited-scale dataset by generating novel scene per-
spectives and corresponding high-quality depth maps. Ex-
perimental results demonstrate that the augmented dataset
significantly boosts the performance of supervised-learning
MDE networks. This highlights the potential of the NISR
approach for scaling small-scale datasets and provides a
valuable solution to further improve the efficacy of existing
supervised MDE models without the need for an expensive
label collection process.

1. Introduction
Depth estimation is a critical problem in computer vi-

sion, playing a pivotal role in various applications such as
autonomous driving, robotics, and augmented reality. Par-
ticularly in scenarios where computational resources, mem-
ory, or installation space are limited, the task of Monocular
Depth Estimation (MDE) becomes essential. MDE involves
predicting the depth of a 3D point using only a single view-
point, presenting a challenge due to scale ambiguity. The
ill-posed nature of the task of MDE leads to an infinite num-
ber of potential solutions.
In recent years, data-driven methods have emerged as a
prominent approach to solving MDE. However, obtaining
high-quality ground truth depth data, such as through Li-
DAR, is prohibitively expensive. While self-supervised
MDE methods capable of utilizing large-scale unlabeled
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Figure 1: Next-level data augmentation. We reconstruct
scenes from existing data and render novel views to aug-
ment the original small-scale dataset for MDE training.
datasets have gained attention, they still fall short of super-
vised methods in terms of performance. The latter demands
abundant labeled data with reliable supervisory depth maps,
creating a pressing need to generate a substantial amount of
reliable image-depth pairs from limited data, thereby im-
proving the efficacy of supervised learning methods and
circumventing the costly process of collecting ground-truth
depth labels.

To address this problem, we propose to exploit the capa-
bilities of Neural Implicit Surface Reconstruction (NISR)
techniques. NISR methods, such as Neural Radiance
Field (NeRF) [18] and implicit Signed Distance Functions
(SDFs) [11, 31], have recently gained popularity for multi-
view 3D reconstruction. By leveraging a small number of
views, these methods enable the generation of novel scene
perspectives and corresponding high-quality depth maps.
Therefore, NISR methods offer a viable solution for aug-
menting a limited-scale dataset by producing large-scale
image-depth pairs from the original data.
Our experimental results demonstrate that this approach
substantially enhances the performance of supervised-
learning MDE networks. After augmenting the original
dataset with the virtual views generated by MonoSDF [31],
the extended dataset enables enhanced supervision in MDE.
Consequently, the MDE model DeepLabv3+ [6] trained on
the augmented dataset demonstrates notable improvements
in depth estimation accuracy compared to the performance
exhibited by an identical model trained solely on the origi-
nal small-scale dataset.
Overall, our contributions can be summarized as follows:

• We propose leveraging NISR methods to augment a
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limited-scale dataset via scene reconstruction and vir-
tual view-depth pair generation for supervised training
of data-driven MDE networks.

• We conduct extensive experiments and present exper-
imental results that validate the effectiveness of our
approach, showcasing significant improvements in the
performance of supervised-learning MDE networks.

2. Related Work
Monocular Depth Estimation (MDE). Data-driven ap-

proaches for MDE can be broadly classified into three cate-
gories: supervised, self-supervised, and unsupervised meth-
ods. In this paper, we focus on end-to-end supervised meth-
ods, which require high-quality pixel-wise depth labels for
training and mapping a single image to its depth map at
inference time. One of the pioneering endeavors in this do-
main is represented by [10], where Eigen et al. employed
Convolutional Neural Networks (CNNs) to regress depth
values directly. Their approach involved making an ini-
tial global depth prediction by a CNN and then applying
another to refine the coarse prediction with local informa-
tion. Additionally, they employed a scale-invariant error (SI
log loss) for training, ensuring the focus on spatial relations
rather than general scale in the depth prediction. Following
this seminar work, subsequent studies have explored novel
architectural designs, ranging from deep residual networks
[15] to transformers [32] to improve the modeling capabil-
ities and performance of MDE models. Researchers have
also introduced alternative loss functions, such as the re-
verse Huber (berHu) loss [15], or adaptive combinations of
multiple losses [16]. Some approaches have tackled the di-
rect regression problem by translating it into ordinal regres-
sion [3] or classification [4] and utilizing ordinal regression
loss or classification loss to facilitate training. Addition-
ally, the concept of multi-task learning has been leveraged
to jointly learn the MDE task alongside other mutually ben-
eficial tasks, such as normal prediction and semantic seg-
mentation [22, 34]. Among this type of work, DeepLabv3+
[6] is a prominent and successful model that can produce
dense prediction by utilizing an encoder-decoder architec-
ture with an atrous spatial pyramid pooling (ASPP) module.
While originally designed for semantic segmentation, we
use it for MDE to exploit its ability to capture multi-scale
contextual information provided by the ASPP module.

Dataset Augmentation for MDE. To expand the avail-
able training data for supervised learning, data augmenta-
tion is a widely-used and effective approach. Generic data
augmentation techniques, including parameter-free meth-
ods such as [33, 35], and learning-based ones such as [7],
have been widely adopted across various computer vision
tasks to augment the dataset size. Recently, there have
emerged several methods specifically tailored for MDE

tasks, including data grafting [20], (Vertical) CutDepth [14],
and CutFlip [24]. However, our proposed method funda-
mentally distinguishes itself from these approaches in sev-
eral critical aspects. Firstly, while the aforementioned meth-
ods do not introduce any new information in the augmented
data, as it is directly derived from and hence overlaps with
the original data, our method generates novel data encom-
passing previously unobserved information. This funda-
mental difference leads to a distinctive characteristic of our
method, enabling the incorporation of fresh perspectives
into the MDE models. Secondly, while the primary aim
of the existing data augmentation methods for MDE is to
enhance the networks’ ability to learn diverse cues and mit-
igate overfitting, our method tackles the issue of limited
availability of high-quality image-depth pairs. To the best
of our knowledge, we are the first to exploit NISR tech-
niques to augment small-scale datasets for MDE, leading
to improved MDE performance by integrating novel virtual
view-depth pairs.

Neural Implicit Surface Reconstruction (NISR).
NISR has recently emerged as a potent paradigm for the
reconstruction of 3D surfaces from multi-view images. Per-
taining to this field, previous studies can be broadly clas-
sified into surface rendering-based and volume rendering-
based methods. Surface rendering-based methods such as
[13] assume that the color of a ray depends solely on its
intersection with the scene geometry, thereby confining the
backpropagated gradient to a localized region around the
intersection. Typically, these methods necessitate object
masks for supervision. NeRF [18] is an influential tech-
nique that synthesizes novel views by employing volume
rendering to accumulate the colors as well as densities of
sampled points along each ray into an image. Although
NeRF has yielded exceptional outcomes in novel view syn-
thesis, extracting high-quality surfaces and recovering nice
3D geometry from its output remains a problem due to the
absence of surface constraints within its geometry represen-
tation. Inspired by NeRF, UNISURF [19] leverages volume
rendering to learn an implicit surface. By incorporating an
implicit surface representation into the volume rendering
framework, UNISURF achieves 3D geometry reconstruc-
tion without relying on object masks, presenting a signif-
icant advancement in the field. In contrast to UNISURF,
which adopts occupancy values for representing the 3D
surface, VolSDF [29] and NeuS [27] utilize an alterna-
tive approach by representing the surface as a signed dis-
tance function (SDF). This alternative representation leads
to enhanced reconstruction accuracy. Further improvements
were introduced by incorporating geometric cues in the pro-
cess of reconstruction, NeuRIS [26] propose to use normal
cues for indoor scene reconstruction; MonoSDF [31] incor-
porates depth and normal priors to refine implicit surface
reconstruction method, enabling them to attain significantly



Figure 2: Overview of the MDE with Virtual-view Supervision pipeline. We use Replica dataset [25] as mentioned in
Section 2, but any appropriate dataset can be used. Additionally, this pipeline can be applied to improve any MDE network.
We use DeepLabv3+ [6] for our experiments as mentioned in Section 2.

more detailed reconstructions while reducing optimization
time. In this paper, we leverage the MonoSDF framework
to generate novel data for MDE, capitalizing on its ability
to produce highly detailed and accurate surface reconstruc-
tions.

3. Methods

We propose a novel dataset augmentation technique for
the task of MDE that leverages the 3D reconstruction capa-
bility of MonoSDF [31], which enables it to generate novel
RGB-D images given multiple input poses and correspond-
ing RGB-D images. We evaluate our proposed approach
on the digitized indoor dataset Replica [25], to benefit from
the perfect supervision for MonoSDF and our chosen off-
the-shelf MDE networks DeepLabv3+ [6] and U-Net [23].

3.1. Proposed Pipeline

Our proposed pipeline works as follows: First, we must
define trajectories for each scene in the Replica [25] dataset.
These trajectories are then rendered using a customized ver-
sion of the ReplicaRenderer provided by Replica. We use
the views from the rendered trajectories to form a small-
scale dataset. Following this step, we train MonoSDF [31]
on each scene separately and, after convergence, render vir-
tual RGB-D images using MonoSDF and StudioSDF [30].
We filter out inferior virtual RGB-D images using hand-
crafted filtering algorithms. Together with the original data,
the filtered novel views form the augmented large-scale
dataset. Finally, we train a MDE network on both the origi-
nal dataset and the augmented dataset for comparison. Fig-
ure 2 shows this pipeline visually.

3.2. Dataset Generation

In contrast to other 3D datasets [8, 5], the Replica dataset
[25] has to be rendered to obtain RGB-D images. It is inte-
grated into Habitat-Sim [17], which enables the simulation
and rendering of Replica scenes, but unfortunately, it is im-
possible to install Habitat-Sim on the ETH cluster. Due to
this issue, we utilize the provided ReplicaSDK [25], which

contains the tools ReplicaRenderer and ReplicaViewer to
render RGB-D images. Since the ReplicaRenderer as a
standalone program does not provide an interface to traverse
Replica scenes on customized trajectories, we modify its
C++ source code to enable this functionality. We enable the
traversal along linearly interpolated trajectories between se-
quences of two poses. We query the poses for the traversal
through a slightly modified version of the ReplicaViewer,
which features a new button on its interface that saves the
poses of the current viewpoint in a CSV file. This file is
automatically parsed by the modified ReplicaRenderer.
For the generation of our small-scale dataset, used for the
training of MonoSDF and our MDE network, we render 50
RGB-D images along a total of 40 unique, linear trajecto-
ries from 14 scenes, which makes 2000 training images. We
restrict ourselves to straight paths to evaluate MonoSDF in
a problematic, more challenging setting. Within the limita-
tions of available computational resources, we vary the ratio
between the volume of augmented data and the volume of
original data to examine the influence of different augmen-
tation levels on the performance of the MDE network. We
withhold 3 scenes from the Replica dataset and use 2 of
them to generate a validation set with 1234 RGB-D images
and 1 scene for our test set with 273 RGB-D images.

3.3. Novel View Synthesis with MonoSDF

To render novel views of a scene, we first have to re-
construct it. As mentioned in Section 2, out of the many
different techniques that can do so, MonoSDF was chosen
for its SOTA reconstruction quality. The depth and normal
cues necessary for the MonoSDF pipeline are predicted us-
ing the pre-trained V2 DPT-based Omnidata [9] normal and
depth estimation networks. For our purposes, only the nor-
mals are estimated as we use the ground truth depth data in-
stead of the depth prediction. This has two benefits: depth
reconstruction at the correct scaling and overall improved
depth detail reconstruction quality. Since MonoSDF has
been integrated into the SDF Studio [30] framework, it is
necessary to convert the dataset into the correct format to
be parsed. Modifying the provided example script, image



poses are converted from OpenGL to OpenCV format, cen-
tered, and scaled.

L = LRGB +λ1LEikonal+λ2LSensor
Depth

+λ3LNormal (1)

For each scene, a MonoSDF model is trained until con-
vergence with the loss function given above, with λ1, λ2, λ3

set to 0.1, 0.1, 0.05 respectively. To generate novel RGB-
D images, we must determine the novel poses from which
these are rendered. Empirically we determined that image
quality quickly deteriorates as we move further away from
the given training poses associated with the images used to
train the network. Hence we seek to disturb the training
poses only slightly, finding a balance between the novelty of
the viewpoint and satisfactory image quality. Based on the
data size multiplication factor M , we generate M randomly
rotated, and M randomly translated poses for each of the N
training poses. This means we generate a total of 2MN
novel poses. To get the novel rotated poses, we repeat the
following procedure M times for every training pose: Pick
one axis (x,y,z) at random and then draw an angle from the
uniform distribution between -20 and 20 degrees. Similarly,
to get the novel translated pose, we randomly pick an axis,
draw from the uniform distribution between -0.05 and 0.05,
and then translate the training pose in the chosen axis by
this amount.

We can generate RGB-D images instead of a video by
modifying the existing SDF Studio render script. Each
RGB-D image takes around 20s to render, hence with 2,000
training images and M = 10, the rendering process alone
takes around 9.3 days on a single RTX 3090. Some of these
novel views will still have unsatisfactory reconstruction re-
sults, hence the need for a filtering algorithm. Following the
findings in [1], we can detect blurred images by first con-
volving the image with the Laplacian kernel and then tak-
ing the variance of the response. The images with variance
below an experimentally determined threshold of 20 are re-
moved. Hereafter, we also filter out images based on the
depth maps. If the average depth is below as preset thresh-
old of 0.5 meters, the RGB-D image is also removed.

3.4. Monocular Depth Estimation Architecture

We use DeepLabv3+ [6] and U-Net [23], two off-the-
shelf Semantic Segmentation networks. Since U-Net has
been shown to perform well in MDE when paired with
a specialized training scheme [2], we hypothesize that
DeepLabv3+ can be a good choice as well.

We choose both networks due to their low computational
complexity compared to current SOTA MDE networks such
as [21, 28], while still performing well enough to draw pos-
sible conclusions about the effectiveness of our novel aug-
mentation method.

We train the MDE network with the Scale Invariant Log
Loss (LSILog

) [10], which is widely accepted as a common

loss function for MDE as well as the reverse Huber loss
(LberHu) [15], which behaves like an L1 loss for smaller
errors and like an L2 loss for higher errors.

3.5. Evaluation Metrics for MDE

We utilize the MDE evaluation metrics used in [2].
The metrics are defined as follows given prediction ŷi and
ground truth value yi:
Relative Error (REL): 1

N

∑N
i=1

|yi−ŷi|
yi

Squared Relative Error (SQ. REL): 1
N

∑N
i=1

|yi−ŷi|2
yi

Root Mean Squared Error (RMSE):
√

1
N

∑N
i=1(yi − ŷi)2

Log RMSE:
√

1
N

∑N
i=1(log yi − log ŷi)2

Threshold Accuracy (δj): max(yi

ŷi
, ŷi

yi
) = δ < 1.25j

4. Experiments
4.1. Training and Evaluation of MonoSDF

Scene training image allocation varied between 50 im-
ages for small scenes such as “Room 1” and up to 650 for
large scenes like “Apartment 0”. All scenes were trained
for 200,000 steps except “Apartment 0” which was trained
for 400,000 steps, taking 11 and 22 hours per scene respec-
tively on an RTX 3090 GPU. The network was not able to
converge on “Office 1” and “Office 4”. After passing these
images through the filter, around 12% of the results are fil-
tered out.

Novel view samples can be seen in Figure 4 compared
with their Replica ground truth rendering. Produced RGB-
D images are visually appealing. However, small details
like the farthest chair in “Room 2” or the whiteboard in “Of-
fice 3” are lost in the depth map. We hypothesize that this is
a result of the network unifying surfaces with the same nor-
mal values. Furthermore, scenes with undefined regions,
such as the ceiling in “FRL apartment” lead to bad depth
map reconstructions. We address this issue in a later sec-
tion with a masking technique.

4.2. Training of the MDE Networks

In this section, we evaluate our novel dataset augmen-
tation method in multiple ways. We first evaluate the
performance of the two chosen off-the-shelf MDE models
described in Section 3.4 against each other and test the
influence of different loss functions. We then evaluate the
effect of different ratios of virtual- to real-view RGB-D
images, and introduce different ways the augmented data
can be used in the training procedure.

Comparison of MDE Networks and Loss Functions

Here we train both networks using only the original RGB-
D images to isolate the influence that the model and loss
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Figure 3: Qualitative depth prediction results. Ground truth, baseline, and 400% mask depth prediction performance
are compared on the test set. Despite the baseline depth prediction results exhibit a slightly sharper appearance, there is a
noticeable improvement in the depth values for walls.
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Figure 4: Novel viewpoint quality comparison. Although
missing fine-grained details in the depth maps, the overall
quality of both the RGB and depth maps is high and reliable.

function choice make. For a fair comparison, we train both
networks for 50,000 steps with batch size 8. We choose this
number of steps as the performance of both networks satu-
rates already before step 50,000, and the networks start to
overfit slightly, which is expected with only 2,000 training
images.

The results of our analysis show that DeepLabv3+ [6]
reaches significantly better values for all measured perfor-
mance metrics as shown in Table 2. This is an expected
result as DeepLabv3+ contains a pre-trained ResNet50 [12]
backbone and as such has more than 2.6 times the parame-
ters as U-Net. The results also show that LberHu [15] is the
better choice as it reaches better values independent of the
model architecture.
Based on the results of these experiments, we decide only
to consider DeepLabv3+ with LberHu in the following sec-
tions.

Comparing Techniques for Utilizing Virtual-View Data

This section compares different methods to incorporate the
virtual-view RGB-D images into the training procedure.
Quantitative results can be seen in Table. 1. We first test
the influence that the ratio of original data to augmented
data has. Here the given percentage refers to how much ad-
ditional synthetic data composed of novel viewpoints have
been added compared to the original dataset size. We note
that even a 40% addition of novel views leads to a signifi-
cant jump in threshold accuracy 1 (δ1). A general trend is
that using virtual views is beneficial in almost every metric.



Table 1: Comparison of Different Augmentation Techniques (Validation). The majority of our implementations improve upon
the baseline across all metrics. The best results are in bold font, second best are underlined. Results worse than baseline on a particular
metric are highlighted in red.

Method RMSE ↓ RMSE LOG ↓ REL ↓ SQ. REL ↓ δ1 ↑ δ2 ↑ δ3 ↑

0% 0.390 0.169 0.1269 0.063 0.801 0.976 0.9975
40% 0.370 0.160 0.1244 0.061 0.845 0.982 0.9967
80% 0.361 0.159 0.1250 0.057 0.836 0.985 0.9984
200% 0.379 0.160 0.1280 0.062 0.849 0.981 0.9974
400% 0.373 0.158 0.1272 0.059 0.846 0.986 0.9985
400% Pretrain 0.380 0.167 0.1227 0.059 0.856 0.981 0.9962

400% Mask 0.356 0.154 0.1226 0.054 0.850 0.990 0.9986

Table 2: Results of the Different MDE Networks and
Loss Functions. DeepLabv3+[6] outperforms U-Net[23] in ev-
ery metric with both loss functions. LberHu [15] outperforms
LSILog [10] in every metric. The best results are in bold font,
second best are underlined.

Network Loss RMSE LOG REL δ1 δ2 δ3
↓ ↓ ↓ ↑ ↑ ↑

DeepLab LSILog 0.464 0.193 0.142 0.753 0.959 0.995
v3+ LberHu 0.390 0.169 0.127 0.801 0.976 0.998

U-Net LSILog 0.678 0.275 0.198 0.615 0.876 0.964
LberHu 0.610 0.263 0.203 0.620 0.914 0.983

However, we do not observe a clear relationship between
how much additional data is added and the performance in-
crease.

In addition to dataset size scaling, we also evaluate two
techniques we label as pretrain and mask. For the pre-
training, we begin by training the MDE network with pure
novel data, then reduce the learning rate and fine-tune it on
the original data. For the masking technique, we assign ze-
ros to pixels in the image that contain highly inconsistent
depth values with respect to its RGB image and ones to all
other pixels. We multiply the pixel-wise loss with the mask.
This, in theory, prevents the MDE network from being pun-
ished in areas that the MonoSDF failed to reconstruct.

Results on Test Data

We take the augmentation technique that was shown to be
the best-performing, which is DeepLabv3+ [6] with LberHu

[15], 400% more virtual data and depth-penalty mask and
evaluate it on the test dataset. We compare it to the same
MDE model trained without any virtual-view supervision.
The results in Table 3 show that our novel dataset augmen-
tation technique outperforms the mentioned baseline model
by a large margin. The most impressive results are the
gains in threshold accuracy 2 (δ2) and threshold accuracy 3
(δ3), where our technique surpassed the baseline technique
by more than 7 and 5 percentage points in absolute values
which correspond to relative gains of more than 9% for the
former, and exactly 12% for the latter.

Table 3: Results (Test). The best augmentation technique from
the experiment on the validation dataset (400% masked) beats the
non-augmented dataset (baseline) by a large margin in every eval-
uation metric.

RMSE LOG REL δ1 δ2 δ3
Data ↓ ↓ ↓ ↑ ↑ ↑

Base 0.677 0.352 0.196 0.450 0.756 0.933

400% Masked 0.562 0.318 0.179 0.504 0.825 0.963

5. Conclusion
We demonstrate the effectiveness of our proposed novel 

dataset augmentation technique for Monocular Depth Es-
timation in a very constrained but controlled indoor envi-
ronment. Although the resulting depth maps do not appear 
qualitatively better to the subjective human eye, they outper-
form the non-augmented version in every evaluated depth 
estimation metric across the validation and test datasets. 
These results make us optimistic about possible future en-
deavors to explore the potential of this method further. Due 
to the flexibility of our pipeline, as i ts components can be 
exchanged with any other component with similar usage, 
we hope to explore the utility of our pipeline in an out-
door setting, which could be very attractive for Autonomous 
Driving scenarios. Furthermore, we would like to experi-
ment if a SOTA MDE network could also benefit from our 
augmentation technique.
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