

Monocular Depth Estimation with Virtualview Supervision

Nikolas Hars^{1*}, Casimir Feldmann^{1*}, Rong Zou^{1*}, Kirat Virmani^{1*}, Dr. Zuria Bauer¹, Dr. Martin R. Oswald^{1 2} Computer Vision and Geometry Group, ETH Zürich

{nihars, cfeldmann, ronzou, kvirmani, zuria.bauer, moswald}@ethz.ch

*equal contributions

Motivation

Quantitative Comparison / Ablation Study

Problem:

Gathering large amounts of RGBD data necessary for training Monocular Depth Estimation (MDE) networks is laborious and expensive

Contribution:

- Train a Neural Implicit Surface Reconstruction network (NISR) on existing sparse unidirectional RGBD pose data
- Generate novel views and use them as additional geometric supervisory signals during training to improve MDE

Method Overview

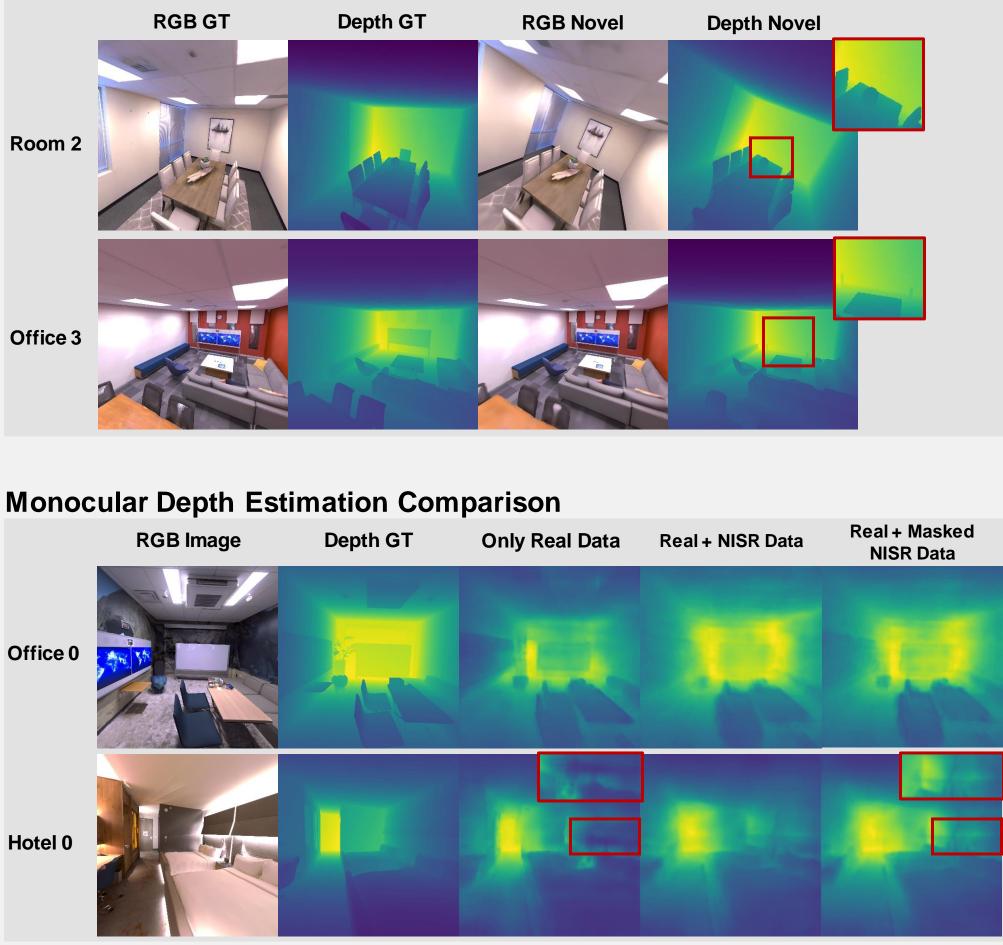
Custom Replica Dataset Split:

- Tiny dataset with constrained viewpoints
- Unidirectionality emulates Monocular Depth-Collection Pipeline, e.g., Autonomous Driving, Phone Sweep
- 2,000 Train / 1,234 Validation / 273 Test

Novel Viewpoint Synthesis (NVS) Pipeline:

- MonoSDF based model using the SDF Studio framework is trained on every scene separately
- Correct metric depth scaling enforced by ground truth depth loss
- Novel viewpoint poses are generated with random uniform translations and rotations of training poses
- The MDE network DeepLabV3+ is trained on a mix of original and filtered novel data

Comparison of Different Augmentation Techniques (Validation)


Technique	RMSE↓	RMSE LOG↓	SQ REL \downarrow	δ _{0.5} ↑	δ 1↑	δ ₂ ↑
Original	0.390	0.169	0.063	0.524	0.801	0.976
+ NISR	0.373	0.158	0.059	0.557	0.846	0.986
+ NISR - pretraining	0.380	0.167	0.059	0.560	0.856	0.981
+ Masked NISR	0.356	0.154	0.054	0.565	0.850	0.990

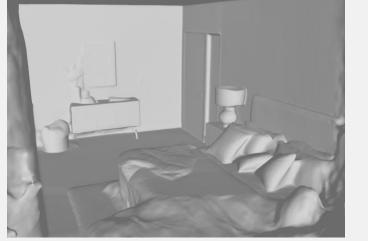
Effect of Relative Number of Extra NISR Images (Validation)

Extra NISR images	RMSE↓	RMSE LOG↓	SQ REL \downarrow	δ _{0.5} ↑	δ_1 ↑	δ ₂ ↑
+0%	0.390	0.169	0.063	0.5239	0.801	0.976
+40%	0.370	0.160	0.061	0.5646	0.845	0.982
+80%	0.361	0.159	0.057	0.5553	0.836	0.985
+200%	0.379	0.160	0.062	0.5650	0.849	0.981
+400%	0.373	0.158	0.059	0.5572	0.846	0.986
Result (Test)						
Method	RMSE↓	RMSE LOG↓	SQ REL \downarrow	δ _{0.5} ↑	δ 1↑	δ ₂ ↑
Original	0.677	0.352	0.196	0.261	0.450	0.756
+ Masked NISR 400%	0.562	0.318	0.179	0.276	0.504	0.825

Qualitative Comparison

MonoSDF RGB and Depth Reconstruction Quality

DeepLabV3+ Loss:


 $\mathcal{L} = \mathcal{L}_{berHu}$

MonoSDF Loss: $\lambda_1 = 1, \lambda_2 = \lambda_3 = 0.1, \lambda_4 = 0.05$ $\mathcal{L} = \mathcal{L}_{RGB} + \lambda_1 \mathcal{L}_{SensorDepth} + \lambda_2 \mathcal{L}_{Eikonal} + \lambda_3 \mathcal{L}_{Normal}$

Key Insights

- Up to 12% higher depth estimation accuracy from identical dataset
- Model agnostic \rightarrow Can be used with off the shelf MDE network
- SDF convergence can be difficult and small details are lost

References: 3: https://github.com/nianticlabs/monodepth2 4: https://github.com/facebookresearch/Replica-Dataset

